4 research outputs found

    Novel Artificial Neural Network Application for Prediction of Inverse Kinematics of Robot Manipulator

    Get PDF
    The robot control problem can be divided into two main areas, kinematics control (the coordination of the links of kinematics chain to produce desire motion of the robot), and dynamic control (driving the actuator of the mechanism to follow the commanded position velocities). In general the control strategies used in robot involves position coordination in Cartesian space by direct or indirect kinematics method. Inverse kinematics comprises the computation need to find the join angles for a given Cartesian position and orientation of the end effectors. This computation is fundamental to control of robot arms but it is very difficult to calculate an inverse kinematics solution of robot manipulator. For this solution most industrial robot arms are designed by using a non-linear algebraic computation to finding the inverse kinematics solution. From the literature it is well described that there is no unique solution for the inverse kinematics. That is why it is significant to apply an artificial neural network models. Here structured artificial neural network (ANN) models an approach has been proposed to control the motion of robot manipulator. In these work two types of ANN models were used. The first kind ANN model is MLP (multi-layer perceptrons) which was famous as back propagation neural network model. In this network gradient descent type of learning rules are applied. The second kind of ANN model is PPN (polynomial poly-processor neural network) where polynomial equation was used. Here, work has been undertaken to find the best ANN configuration for the problem. It was found that between MLP and PPN, MLP gives better result as compared to PPN by considering average percentage error, as the performance index

    Inverse Kinematic Analysis of Robot Manipulators

    Get PDF
    An important part of industrial robot manipulators is to achieve desired position and orientation of end effector or tool so as to complete the pre-specified task. To achieve the above stated goal one should have the sound knowledge of inverse kinematic problem. The problem of getting inverse kinematic solution has been on the outline of various researchers and is deliberated as thorough researched and mature problem. There are many fields of applications of robot manipulators to execute the given tasks such as material handling, pick-n-place, planetary and undersea explorations, space manipulation, and hazardous field etc. Moreover, medical field robotics catches applications in rehabilitation and surgery that involve kinematic, dynamic and control operations. Therefore, industrial robot manipulators are required to have proper knowledge of its joint variables as well as understanding of kinematic parameters. The motion of the end effector or manipulator is controlled by their joint actuator and this produces the required motion in each joints. Therefore, the controller should always supply an accurate value of joint variables analogous to the end effector position. Even though industrial robots are in the advanced stage, some of the basic problems in kinematics are still unsolved and constitute an active focus for research. Among these unsolved problems, the direct kinematics problem for parallel mechanism and inverse kinematics for serial chains constitute a decent share of research domain. The forward kinematics of robot manipulator is simpler problem and it has unique or closed form solution. The forward kinematics can be given by the conversion of joint space to Cartesian space of the manipulator. On the other hand inverse kinematics can be determined by the conversion of Cartesian space to joint space. The inverse kinematic of the robot manipulator does not provide the closed form solution. Hence, industrial manipulator can achieve a desired task or end effector position in more than one configuration. Therefore, to achieve exact solution of the joint variables has been the main concern to the researchers. A brief introduction of industrial robot manipulators, evolution and classification is presented. The basic configurations of robot manipulator are demonstrated and their benefits and drawbacks are deliberated along with the applications. The difficulties to solve forward and inverse kinematics of robot manipulator are discussed and solution of inverse kinematic is introduced through conventional methods. In order to accomplish the desired objective of the work and attain the solution of inverse kinematic problem an efficient study of the existing tools and techniques has been done. A review of literature survey and various tools used to solve inverse kinematic problem on different aspects is discussed. The various approaches of inverse kinematic solution is categorized in four sections namely structural analysis of mechanism, conventional approaches, intelligence or soft computing approaches and optimization based approaches. A portion of important and more significant literatures are thoroughly discussed and brief investigation is made on conclusions and gaps with respect to the inverse kinematic solution of industrial robot manipulators. Based on the survey of tools and techniques used for the kinematic analysis the broad objective of the present research work is presented as; to carry out the kinematic analyses of different configurations of industrial robot manipulators. The mathematical modelling of selected robot manipulator using existing tools and techniques has to be made for the comparative study of proposed method. On the other hand, development of new algorithm and their mathematical modelling for the solution of inverse kinematic problem has to be made for the analysis of quality and efficiency of the obtained solutions. Therefore, the study of appropriate tools and techniques used for the solution of inverse kinematic problems and comparison with proposed method is considered. Moreover, recommendation of the appropriate method for the solution of inverse kinematic problem is presented in the work. Apart from the forward kinematic analysis, the inverse kinematic analysis is quite complex, due to its non-linear formulations and having multiple solutions. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network (ANN) can be gainfully used to yield the desired results. Therefore, in the present work several models of artificial neural network (ANN) are used for the solution of the inverse kinematic problem. This model of ANN does not rely on higher mathematical formulations and are adept to solve NP-hard, non-linear and higher degree of polynomial equations. Although intelligent approaches are not new in this field but some selected models of ANN and their hybridization has been presented for the comparative evaluation of inverse kinematic. The hybridization scheme of ANN and an investigation has been made on accuracies of adopted algorithms. On the other hand, any Optimization algorithms which are capable of solving various multimodal functions can be implemented to solve the inverse kinematic problem. To overcome the problem of conventional tool and intelligent based method the optimization based approach can be implemented. In general, the optimization based approaches are more stable and often converge to the global solution. The major problem of ANN based approaches are its slow convergence and often stuck in local optimum point. Therefore, in present work different optimization based approaches are considered. The formulation of the objective function and associated constrained are discussed thoroughly. The comparison of all adopted algorithms on the basis of number of solutions, mathematical operations and computational time has been presented. The thesis concludes the summary with contributions and scope of the future research work

    Optimization Approach for Inverse Kinematic Solution

    Get PDF
    Inverse kinematics of serial or parallel manipulators can be computed from given Cartesian position and orientation of end effector and reverse of this would yield forward kinematics. Which is nothing but finding out end effector coordinates and angles from given joint angles. Forward kinematics of serial manipulators gives exact solution while inverse kinematics yields number of solutions. The complexity of inverse kinematic solution arises with the increment of degrees of freedom. Therefore it would be desired to adopt optimization techniques. Although the optimization techniques gives number of solution for inverse kinematics problem but it converses the best solution for the minimum function value. The selection of suitable optimization method will provides the global optimization solution, therefore, in this paper proposes quaternion derivation for 5R manipulator inverse kinematic solution which is later compared with teachers learner based optimization (TLBO) and genetic algorithm (GA) for the optimum convergence rate of inverse kinematic solution. An investigation has been made on the accuracies of adopted techniques and total computational time for inverse kinematic evaluations. It is found that TLBO is performing better as compared GA on the basis of fitness function and quaternion algebra gives better computational cost

    Optimization and modelling of mahua oil biodiesel using RSM and genetic algorithm techniques

    Get PDF
    In this present investigation, four important process parameters of catalyst concentration, molar ratio, reaction time, and reaction temperature were studied and optimized using Box Behnken assisted response surface method (RSM) and Genetic Algorithm (GA) to achieve the maximum mahua oil biodiesel yield. For this purpose, 27 experiments were conducted randomly based on the design matrix using statistical software MiniTab®2019. A maximum yield of 91.32 % is achieved in RSM, catalyst concentration and reaction time are identified as influence parameters in biodiesel yield. GA modelling show an improvement of 4.96 % in biodiesel yield compared to RSM approach. Both techniques are successfully tested in prediction and modelling the biodiesel yield from mahua oil. The obtained biodiesel from the transesterification process is blended with standard diesel fuel at various proportions (B10 to B90) and tested for different fuel properties. All the biodiesel blends are observed within the limits of international standards of ASTMD-6751 and EN-14214. The results indicate that the chosen models are highly accurate in achieving maximum biodiesel yield and mahua biodiesel is recommended as the best alternative fuel to diesel engines without any major modifications in the engine design
    corecore